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Abstract. The problem of a spreading ground-water mound of liquid in a porous medium, situated on an imper-
meable horizontal solid layer is revisited. The mathematical formulation for this problem is given by the modified
porous medium equation. A global condition in form of an energy integral is derived, describing the loss of liquid
in the porous medium. This yields the necessary condition that enables the aymptotic derivation of the similarity
exponents for the similarity solution of second kind. The method developed here, is further applied to the corre-
sponding dipole problem, when instead of an energy integral another conservation law, the first moment integral,
is considered.
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1. Introduction

We revisit the problem, previously discussed in [1,2], [3, pp. 52–54] and references therein, of a
porous medium that is partially filled with a radially symmetric mound of liquid bounded by
u(r, t). Under the action of gravity the liquid spreads and displaces the gas outside the mound
at some points, while at other points, pores that were previously filled with liquid are being
occupied by the gas. In the mound at some (initial) time t0 the liquid saturation is assumed
to be equal to σ+. Due to capillary forces some liquid remains in the pores having a residual
saturation σ−, see Figure 1. For slow fluid motion in the porous medium the vertical pressure
in the mound can be assumed to obey the hydrostatic law p=ρg (u−z), where ρ is the liquid
density and g the gravitational constant. Then, according to Darcy’s law the flux of liquid
through a cylindrical surface of area 2πru is

v =− κ

µ
2π r u

∂p

∂r
=−κρgπ

µ
r
∂u2

∂r
, (1.1)

where κ is the permeability of the porous medium and µ the viscosity of the liquid, see e.g.
the classic book [4] for details. Since the change in the flux of the liquid is equal to the rate
of change in the volume of the liquid mound, due to the decreasing saturation from σ+ to
σ−, one obtains

2πrm(σ+ −σ−)
∂u

∂t
= κρgπ

µ

∂

∂r

(
r
∂u2

∂r

)
, (1.2)
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Figure 1. The spreading ground-water mound in porous medium.

where m is the volume of the porous medium, occupied by the pores. This occurs for r ∈
[0, rc), i.e., where ∂u/∂t < 0. Beyond rc the liquid saturation is increasing from zero to σ+,
i.e., where ∂u/∂t >0 the governing equation is

2πrmσ+
∂u

∂t
= κρgπ

µ

∂

∂r

(
r
∂u2

∂r

)
. (1.3)

If we nondimensionalize via

r∗ = r

R
, t∗ = Q

m+R4
t , u= Q

R2
u∗ (1.4)

with R denoting the characteristic length scale in radial direction, and Q the volume initially
contained in the liquid mound, and denote

m+
m−

=1+ ε with ε = σ−
σ+ −σ−

, (1.5)

where

m+ = 2mµσ+
κρ g

and m− = 2mµ(σ+ −σ−)

κρ g
, (1.6)

the nondimensional problem is, after dropping the ′ ∗ ′

∂u

∂t
= 1

r

∂

∂r

(
r
∂u2

∂r

)
, for

∂u

∂t
>0, (1.7a)

∂u

∂t
= 1+ ε

r

∂

∂r

(
r
∂u2

∂r

)
, for

∂u

∂t
<0. (1.7b)

Since the spreading mound u(r, t) is radially symmetric the boundary condition at the sym-
metry axis is

∂u

∂r
=0 at r =0. (1.8)

As for the porous medium equation, solutions to the Cauchy problem for (1.7a–1.7b) have
compact support

u=0 at r = r0(t) (1.9)
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and a bounding interface r0(t) with finite speed of propagation, see e.g. [5] and [6] for gen-
eral reviews and [7] for this problem. Furthermore, continuity of u itself and ∂u/∂r across the
interface rc(t), which is defined by ∂u(rc(t), t)/∂t =0, is assumed; see e.g. [8].

Each of the Equations (1.7a) and (1.7b) is an example of the porous-medium equation and
has similarity solutions of the form

u(r, t)= 1√
t
f (η; ε) , with η= r t−

1
4 . (1.10)

However, due to the differing diffusion coefficients, the respective solutions cannot be matched
at the interface unless ε = 0. If ε �= 0 the jump discontinuity of the coefficient in (1.7a) and
(1.7b) across the free interface rc(t) renders the integral

d
dt

∫ r0(t)

0
r u(r, t)dr �=0. (1.11)

This means, the global condition, here conservation of the fluid mass, is not obeyed if ε �=0.
Indeed, as we will see in more detail later, the very fact that this conservation law is violated
prevents the a priori determination of the similarity index. On the other hand, we will solve
this problem numerically and observe that the solution enters, for large times, a self-similar
regime, which differs from (1.10); see also [8]. Similarity solutions of this type, i.e., where the
similarity index can not be obtained a priori by dimensional analysis, are termed second-kind
similarity solutions.

The problem (1.7a, 1.7b), is a special case of the radially symmetric d-dimensional prob-
lem

∂u

∂t
=
[

1+ εH

(
−∂u

∂t

)]
1

rd−1

∂

∂r

(
rd−1 ∂uk+1

∂r

)
, r ≥0

u(r,0)=F(r) ,

∫ r0

0
rd−1F(r)dr =1 . (1.12)

in conjunction with the boundary conditions (1.8–1.9) and conditions at the interface, for
d =2 and k =1, where H denotes the Heaviside operator.

It has been shown, see [7], that for k >0, d ≥1 the Cauchy problem has a unique solution
in a class of compactly supported, non-negative, maximal viscosity solutions. Furthermore,
they could show that, as t →∞, every maximal viscosity solution with compactly supported
initial data converges to a similarity solution of the second kind.

Here, we will construct the second-kind similarity solution to (1.12) by making use of the
violation of a conservation law to obtain a global condition relating the unknown similarity
index to a certain value of the corresponding second-kind similarity profile. The asymp-
totic method presented here represents a generalization of those developed in [9] for Baren-
blatt’s filtration equation, where we combine Lie-group and perturbation theory to derive the
unknown similarity exponent. Here, we show how our method can be extended to nonlinear
and higher dimensional PDE’s.

Interestingly, we find that, while for the special case of d =2, k =1, our results agree with
those by [10] who computed the similarity index by employing the inverse function theorem,
but differ, even qualitatively, from those found in [11] where this problem was investigated
using renormalization group methods.

We then consider the second-kind dipole solutions to (1.12), its application to the spe-
cial case of the flood problem and numerically investigate the convergence of compactly sup-
ported, positive initial data to the second-kind similarity solutions.
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2. The perturbation method

In [9] it has been shown how the second-kind similarity solution of Barenblatt’s filtra-
tion equation are obtained if the problem is viewed as a perturbation of a corresponding
problem with known similarity solution. More precisely, one can view the Lie group of
the problems with second-kind similarity as a perturbation of the Lie group of a correspond-
ing problem with known similarity solution. As a consequence of this one obtains the proper
perturbation ansatz for such problems, i.e., not only the functions but also the similarity expo-
nents are functions of the perturbation parameter. In our case we make use of the Lie group
of the porous medium equation; see [12]. Based on the method developed in [9] we start our
analysis with

u(x, t)= tα(ε)f (η; ε) η= rtβ(ε) . (2.1)

If we substitute this in (1.12), we obtain

β(ε)=−k α(ε)+1
2

, (2.2)

and the similarity problem for 0≤η≤ηc,

α(ε)ηd−1 f (η; ε)− kα(ε)+1
2

ηd df

dη
= (1+ ε)

d
dη

(
ηd−1 df k+1

dη

)
(2.3a)

and for ηc ≤η≤η0 ,

α(ε)ηd−1 f (η; ε)− kα(ε)+1
2

ηd df

dη
= d

dη

(
ηd−1 df k+1

dη

)
, (2.3b)

where η0 is the point where f vanishes and ηc, where the interface condition

d
dη

(
ηd−1 df k+1

dη

)
=0 at η=ηc (2.4)

holds. The normalization takes on the form∫ η0

0
ηd−1 f (η; ε)dη=1. (2.5)

In order to determine the similarity index α(ε) one can make use of a conservation law for
the case ε = 0. If ε �= 0 this conservation law is violated. However, as we observe next, we
obtain instead a generalized relation, we call a dissipation law. Since for our problem con-
servation of mass is violated we obtain

d
dt

∫ r0(t)

0
rd−1 u(r, t)dr =

∫ rc

0
(1+ ε)

∂

∂r

(
rd−1 ∂uk+1

∂r

)
dr

+
∫ r0

rc

∂

∂r

(
rd−1 ∂uk+1

∂r

)
dr = ε rd−1

c

∂uk+1

∂r
(rc(t), t) . (2.6)

This condition in conjunction with the similarity form determines the similarity index α(ε) for
ε �=0. We observe that (2.6) becomes, in view of (2.1)

d
dt

(
tα(ε)−β(ε)d

) ∫ η0

0
ηd−1 f (η; ε)dη= ε ηd−1

c tα(ε)(k+1)−β(ε)(d−2) df k+1

dη
(ηc) .
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Hence, in view of (2.5) we obtain the relation

α(ε)+ d

k d +2
= ε

2
k d +2

ηd−1
c

df k+1

dη
(ηc) . (2.7)

We assume now that ε 
1 and we make the perturbation ansatz

α(ε)=α0 + εα1 + ε2α2 +· · · , β(ε)=−kα0 +1
2

− ε
kα1

2
− ε2 kα2

2
−· · · , (2.8-2.9)

and

f (η; ε)=f0(η)+ εf1(η)+ ε2f2(η)+· · · . (2.10)

If we substitute (2.8–2.10) in Equation (1.12) (or (2.3a–2.3b)), we obtain a sequence of ordi-
nary differential equations, together with the normalization∫ η0

0
ηd−1 f0(η)dη=1, (2.11)∫ η0

0
ηd−1 fi(η)dη=0, i =1,2, . . . . (2.12)

Furthermore, we obtain a sequence of equations from our relation for the similarity index,
namely,

α0 =− d

k d +2
, (2.13)

α1 = 2
k d +2

ηd−1
c

df k+1
0

dη
(ηc) , (2.14)

α2 = 2
k d +2

ηd−1
c (k +1)

d
dη

(
f k

0 f1

) ∣∣∣∣
η=ηc

. (2.15)

...

Hence we finally need to determine the values fi(ηc). To leading order we have the similarity
problem for the porous medium equation which has the well-known Barenblatt-Pattle solu-
tion. Here we obtain

α0η
d−1 f0(η)− kα0 +1

2
ηd df0

dη
= d

dη

(
ηd−1 df k+1

0

dη

)
, 0≤η≤η0 ,

which can be written as(
k d +2

2
α0 + d

2

)
ηd−1f0(η)= d

dη

(
ηd−1 df k+1

0

dη
+ kα0 +1

2
ηd f0(η)

)
.

This we integrate and recall that α0 =−d/(kd +2) to obtain

f0(η)=
[

k

2(k d +2)(k +1)

(
η2

0 −η2
)] 1

k

, (2.16)

where η0 is determined through the normalization condition

∫ η0

0
ηd−1 f0(η)dη=

(
k

2(k d +2)(k +1)

) 1
k
∫ η0

0
ηd−1 (η2

0 −η2)
1
k dη=1 .
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Thus

η
k d+2

k

0 =2
(

2(k d +2)(k +1)

k

) 1
k 1

B
(

d
2 , k+1

k

) , (2.17)

where B denotes the Beta function. Since the interface condition (2.4) yields

ηc =
√

k d

k d +2
η0 , (2.18)

we obtain for α1 the formula

α1 =−
(

k d

k d +2

) d
2
(

2
k d +2

) 2k+1
k 1

B
(

d
2 , k+1

k

) . (2.19)

Next, we find the exponents αi , i = 2,3, . . . . For this we now have only to solve the linear
equations of second order for fi−1(η) in their respective interval of validity and require con-
tinuity across the interface at ηc, in order to find the value fi−1(ηc). We demonstrate this here
for i =2. To O(ε) we obtain from Equation (2.3a–2.3b) for 0≤η≤ηc

d
dη

[
ηd−1 (k +1)

d
dη

(
f k

0 f1

)
+ 1

k d +2
ηd f1

]
=α1

(
ηd−1 f0 − k

2
ηd df0

dη

)
− d

dη

(
ηd−1 df k+1

0

dη

)
,

(2.20a)

and for ηc ≤η≤η0:

d
dη

[
ηd−1 (k +1)

d
dη

(
f k

0 f1

)
+ 1

k d +2
ηd f1

]
=α1

(
ηd−1 f0 − k

2
ηd df0

dη

)
. (2.20b)

We can now integrate (2.20a) from 0 to η and (2.20b) from η to η0 to obtain for 0≤η≤ηc:

ηd−1 (k +1)
d

dη

(
f k

0 f1

)
+ 1

k d +2
ηd f1 =α1

∫ η

0
ηd−1 f0 − k

2
ηd df0

dη
dη−ηd−1 df k+1

0

dη
, (2.21a)

and for ηc ≤η≤η0:

ηd−1 (k +1)
d

dη

(
f k

0 f1

)
+ 1

k d +2
ηd f1 =α1

∫ η0

η

ηd−1 f0 − k

2
ηd df0

dη
dη . (2.21b)

Note, that now, by evaluating (2.21b) at ηc we can determine α2 from

α2 =− 2
k d +2

(
α1I0(ηc)+ 1

k d +2
ηd

c f1(ηc)

)
, (2.22)

where

I0(η)=
(

kη2
0

2(kd +2)(k +1)

) 1
k ∫ η0

η

λd−1

(
η2

0

η2
0 −λ2

) k−1
k

dλ (2.23)

and

f1(ηc)= 8

ηd
0B

(
d
2 , k+1

k

)(α1

[
I7(ηc)I2(ηc)−η

2(k−1)
k

0 (I5(ηc)− I6(ηc))

]

+η
2(k−1)

k

0 I4(ηc)+ kdη2
0

2(kd +2)2

(
k

2(kd +2)(k +1)

) 1
k

I7(ηc)

)
. (2.24)

The derivation of (2.24) is given in Appendix B.
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In the following section we will apply our results to the problem of the spreading
ground-water mound in a porous medium, we expounded in the introduction. This will be
followed by a comparison with our numerical solution to (2.3a–2.3b).

3. Spreading of a ground-water mound

For the problem of the spreading ground-water mound, where k = 1 and d = 2 our results
come out in a particularly simple form. We have

α0 =−1
2

, η2
0 =8 , ηc =1 , (3.1)

f0 =
{

1
16

(
8−η2

)
η≤√

8
0 η>

√
8

,

and

α1 =−1
8
. (3.2)

For the integrals we need for f1(ηc) and α2 we obtain:

I0(η)= 1
4

(
8−η2

)
, I1(η)= 1

4
η2 , I2(η)= 1√

8
log

(√
8+η√
8−η

)
,

I3(η)=− η2

128
, I4(η)=− η4

512
, I7(η)= η2

2
, I8(η)= 1

8

(
8−η2

)
,

and

I5(η)=− 1
16

[
8 log 8+η2(log 8−1)−

(
8−η2

)
log

(
8−η2

)]
,

I6(η)= 1
16

[
8(log 8+ log 4)−η2 log(η2)−

(
8−η2

)
log

(
8−η2

)
−η2 log 4

]
.

From these explicit expressions in (2.22) one can easily calculate

α2 =0·05539339761 . (3.3)

This agrees with the result in [10]. For this problem there is also another result in [11] avail-
able, who employ a renormalization group method. However, while their value for α1 agrees
with ours, their value for α2 does not. In the next paragraph we compare the results of [11]
and ours to numerical results.

3.1. Comparison to numerical solution

At this point, it is useful to numerically solve the ground-water mound problem. For this pur-
pose, we rewrite the Equation (2.3a) and (2.3b), for k =1 and d =2, in the following form:

fηη = α

2(1+ ε)
− fη

η
− fη

f

[
fη + 1+α

4(1+ ε)

]
for 0<η<ηc, (3.4a)

fηη = α

2
− fη

η
− fη

f

[
fη + 1+α

4

]
for ηc <η<1, (3.4b)
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with the boundary condition at η=0,

fη(0)=0 , (3.5)

and the interface and continuity conditions at η=ηc,

αf (ηc)− 1+α

2
ηcfη(ηc)=0, [f ]

η+
c

η−
c

=0, [fη]
η+
c

η−
c

=0 . (3.6-3.8)

For the boundary condition at the interface to the porous medium, we normalize without loss
of generality η0 =1, such that

f (1)=0, (3.9)

Finally, we find it numerically more convenient to replace the integral condition, or the dis-
sipation law, by an extra boundary condition at the liquid/porous-medium interface η = 1.
There, we require no flux across this boundary. Hence, from (2.3b) this results in the con-
dition

fη(1)=−1+α

4
, (3.10)

The problem (3.4a–3.10) is essentially a two-point boundary-value problem for a second-order
differential equation, but with three instead of two boundary conditions at η=0 and 1. The
extra boundary condition fixes the value of α(ε).

We solve this problem numerically via a shooting method. For this purpose, we convert
the second-order ODE into a system of first-order ODEs using the settings y1(η) := f (η)

and y2(η) :=fη(η), which is then solved using an explicit Adams-scheme implemented in the
LSODE-package [13]. The code incorporates a local error estimator for yi(η) i = 1,2, and
automatically adapts its step-size so that the estimated error is within a given tolerance for
the relative error.

The integration is first carried out for (3.4b) up to ηc, starting from the right end point.
In a second step, the integration is continued to the left with the f (ηc) and fη(ηc) obtained
from the previous run, now using (3.4a). Note that ηc has to be determined as part of the
first step; since preliminary runs indicated that f was monotone at ηc, this can be done very
easily through bisection. Near the left end point, f will in general not fulfill (3.5); rather, this
requirement must be fulfilled in order to determine the similarity exponent α(ε). It turns out
that, near η=0 , fη depends monotonically on α, so a bisection method can again be used. In
both bisection schemes, we started with a rather generous choice for the bracketing interval,
making sure that the value of interest was included, then calculated the value of f (ηc), for
example, and replaced one of the points of the interval, according to the sign of f (ηc). This
procedure was repeated until both the length of the interval and f (ηc) had dropped beneath
prescribed tolerances �ηc and �f . Similarly for α(ε) and fη near 0, with tolerances �α and
�fη for the length of the bracketing interval and for fη near zero.

Special attention is required when integrating the ODE near η=0 and η=1, where η and
f vanish, respectively, since these quantities appear in the denominator of certain terms of
(3.4a) and (3.4b). We avoid these regions by starting the integration at an ηr slightly smaller
than 1, and using a linear approximation to obtain a good choice for f (ηr),

f (ηr)≈f (1)− 1+α

4
(ηr −1)= 1+α

4
(1−ηr)>0.

Likewise, we do not integrate up to zero, but use a small but positive value for the left end
point ηl instead.
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The numerical trials were carried out using the standard choice of tolerances and trunca-
tion parameters, tol = 10−10, ηl = 10−4, ηr = 1 − 10−5, �α = 10−11, �fη = 10−8, �ηc = 10−11,
�f =10−7 .

The results for α(ε) of the numerical computations for a standard choice of tolerances and
truncation parameters plus convergence checks for the truncation parameters ηl and ηr are
shown in Table 1 in Appendix A. They show very good agreement with the analytical value
α(0)=−0·5 for the first-kind similarity case.

We now compare our results with the asymptotic theory. To this end, we calculate, for
each ε, the values

α1 = α(ε)+0·5
ε

, α2 = α(ε)+0·5+0·125ε

ε2
.

As ε approaches 0, these values should converge to the theoretical predictions. The results are
shown in Table 2 in Appendix A. Convergence can indeed be observed for α1, and for α2. For
the latter, the numerical error prevents α2 to get closer to the theoretical value for ε <0·005.

The numerical estimates can be improved by extrapolation of the tabulated values for α(ε).
To avoid the influence of numerical errors from the inclusion of α(ε) for very small ε, we only
used the values of Table 1 for ε≥0·01 to compute the extrapolation polynomial, and read off
the following values for the lower-order coefficients,

α0 =−0·5000000064, α1 =−0·1249995996, α2 =0·05537538810.

When we compare the numerical solution for the decay rate α(ε) with our asymptotic results
we observe a significant improvement from our O(ε2) result; see Figure 2. Here, we compare
our results with those from [11]. To that end we show, as they did in their article, the quan-
tity 10(−α(ε)−1/2) as a function of ε. We observe in Figure 3, that their result is also qual-
itatively very different from our results. In view of the discrepancy of the earlier results on
α2 for Barenblatt’s filtration equation in [14] and [9] we are not sure if the reason might be
a problem with the way the renormalization group method is applied, since a derivation of
their higher order exponents was, unfortunately, not given.

Finally we like to address the question of convergence of solutions of (1.12) (with k =
1, d = 2) of compactly supported positive initial data F(r) to a similarity solution. For the
numerical integration of (1.12) we make use of the Imsl routine Dmolch. This routine uses
the method of lines, where the spatial discretization is achieved by collocation using cubic
Hermite polynomials. The routine assumes that the initial data satisfy the boundary condi-
tions and have smooth derivatives. In all our calculations we let the number of Hermite knots

0.70.60.50.40.30.20.10

-0.5

-0.53

-0.56

-0.59

α

ε

Figure 2. Numerical result (+). First order (—) and
second order (- - -) asymptotic results.

1
0

(−
α

   −
1 2
)

0.70.60.50.40.30.20.10

1.4

1.2

1

0.8

0.6

0.4

0.2

0

ε

Figure 3. Numerical results (+), the first-order asymp-
totic result (—), Goldenfeld et al. second-order
asymptotic result (- - -), our second-order asymptotic
result (- · -).
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N =500 and specify the error tolerance tol=10−7. If we now multiply the solution u(r, t) by
t−α(ε) and r by t−β(ε), then, in these scales, we observe, that the solution tends to a station-
ary limit as t →∞; see also [15]. As an example we set ε=0·3 and use our asymptotic results
(3.1–3.3) in (2.8-2.9). For the initial condition we use the function

F(r)= (1− r2)3 for −1<r <1 , (3.11)

and zero otherwise. We observe in Figure 4, that already for t = 10 the solution is, within
graphical resolution, stationary, i.e., in self-similar form.

4. The dipole problem

We demonstrate in this section that our method also extends to problems with different
underlying conservation laws. Here, we consider instead of conservation of mass for the
underlying porous-medium equation ((1.12) for ε = 0), the conservation of the flux and for
simplicity restrict ourselves to the case where d =1. We therefore assume now, that the result-
ing problem is not symmetric about x =0 and impose Dirichlet boundary conditions at x =0.
We notice first that this problem does not admit an energy integral; however, if we consider
the first moment, we immediately see, after integrating parts, that

d
dt

∫ ∞

0
x u(x, t)dx =uk+1(0, t) .

Thus, the flux is conserved if Dirichlet boundary conditions are obeyed at x =0. This problem
has similarity solutions of the first kind, the so-called dipole solutions, describing the large-
time behavior of solutions with initial data on the halfline, [16]. Existence of a unique con-
tinuous weak solution with compact support, as well as convergence to the dipole solution in
the large-time limit has been shown in [17,18].

One typical application of this problem for k = 1, concerns the impact of a flood on the
motion of groundwater. If for example at a certain time the level of a liquid begins to rise
quickly at the symmetry-axis x =0 of a porous layer and after a short duration is again with-
drawn, the large-time behavior of the liquid distribution in the porous medium shows a front
moving with finite velocity further into the porous medium, while at the boundary x =0 fluid
is lost at a constant rate.

Here, we are concerned with the effect of some additional loss of liquid in the pores of
the layer, which, of course, to a certain extent, is the case for all materials.

-3 -2 -1 0 1 2 3
η

0

0.05

0.1

0.15

t−α
 u

Figure 4. t−αu(x, t) in similarity variables at times t =
0·01 (—), 0·1 ( · · · ), 1 (- - -), 10 (− ◦ − ), 100 (− ∗ − )
for ε =0·3.
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Figure 5. Numerical result (+), first-order (—) and
second-order (- - -) asymptotic results.
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When considering an analogous situation as for the problem of the groundwater mound
(k = 1), where the fluid spreads in a porous medium, we will observe that also conservation
of the flux is violated and replaced by a corresponding dissipation law.

Hence, when looking for the large-time behavior of solutions to the problem

∂u

∂t
=
[

1+ εH

(
−∂u

∂t

)]
∂2uk+1

∂x2
, x ≥0

u(x,0)=F(x) ,

∫ x0

0
xF(x)dx =1 , (4.1)

we expect the similarity solutions to be of second kind. As in the previous section we con-
struct them by using the composite-expansion ansatz (2.1) in (4.1) to obtain β(ε)=−[kα(ε)+
1]/2 and the similarity problem for 0≤η≤ηc:

α(ε)η f (η; ε)− kα(ε)+1
2

η2 df
dη

= (1+ ε)
d

dη

(
η

df k+1

dη
−f k+1(η; ε)

)
, (4.2a)

and for ηc ≤η≤η0 :

α(ε)η f (η; ε)− kα(ε)+1
2

η2 df
dη

= d
dη

(
η

df k+1

dη
−f k+1(η; ε)

)
. (4.2b)

In this problem f (η; ε) vanishes at η=0 and η=η0. Here ηc is the point where the interface
condition

d2f k+1

dη2
=0 at η=ηc (4.3)

holds and the normalization is here∫ η0

0
η f (η; ε)dη=1. (4.4)

The dissipation law for the mass-flux takes on the form

d
dt

∫ x0(t)

0
xu(x, t)dx =

∫ xc

0
(1+ ε)

∂

∂x

(
x

∂uk+1

∂x
−uk+1

)
dx

+
∫ x0

xc

∂

∂x

(
x

∂uk+1

∂x
−uk+1

)
dx=ε

(
xc

∂uk+1

∂x
(xc(t), t)−uk+1 (xc(t), t)

)
,

(4.5)

which, in conjunction with the similarity form, yields the following formula for the similarity
index α(ε):

α(ε)(k +1)+1= ε

(
ηc

df k+1

dη
(ηc)−f k+1 (ηc)

)
. (4.6)

We assume now that ε 
 1 and we make the perturbation ansatz (2.8-2.9–2.10) from which
we obtain∫ η0

0
η f0(η)dη=1, (4.7)

∫ η0

0
η fi(η)dη=0, i =1,2, . . . , (4.8)
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and

α0 =− 1
k +1

, (4.9)

α1 =− 1
k +1

(
f k+1

0 (ηc)−ηc

df k+1
0

dη
(ηc)

)
, (4.10)

α2 =−
(

f k
0 f1 −η

d
dη

(
f k

0 f1

))
|η=ηc . (4.11)

...

In order to determine f0(ηc) we integrate the leading-order problem and obtain, in view of
(4.9)

η
df k+1

0

dη
−f k+1

0 (η)+ 1
2(k +1)

η2 f0(η)=0. (4.12)

The use of the integrating factor [η(2k+1)/(k+1)f0]−1 then enables us to solve for f0 (see also
[16]):

f0(η)=
[

k

2(k +2)(k +1)

(
η

k+2
k+1
0 −η

k+2
k+1

)
η

k
k+1

] 1
k

, (4.13)

and the normalization condition yields η0:

η
2(k+1)

k

0 = k +2
k +1

(
2(k +2)(k +1)

k

) 1
k 1

B
(

k+1
k+2 +1, k+1

k

) . (4.14)

Since the interface condition (4.3) yields

ηc =
(

k(2k +3)

2(k +1)2

) k+1
k+2

η0 , (4.15)

we obtain for α1 the formula

α1(k)=− 1
k +1

(
k(2k +3)

2(k +1)2

) 2k+3
k+2

(
k +2

2(k +1)2

) k+1
k

· B−1
(

k +1
k +2

+1,
k +1

k

)
. (4.16)

The index α2 is again determined by solving the O(ε) problem for 0≤η≤ηc, viz.

d
dη

[
(k +1)

(
η

d
dη

(
f k

0 f1

)
−f k

0 f1

)
+ η2f1

2(k +1)

]

=α1

(
ηf0 − k

2
η2 df0

dη

)
− d

dη

(
η

df k+1
0

dη
−f k+1

0

)
, (4.17a)

and for ηc ≤η≤η0 :

d
dη

[
(k +1)

(
η

d
dη

(
f k

0 f1

)
−f k

0 f1

)
+ η2f1

2(k +1)

]
=α1

(
ηf0 − k

2
η2 df0

dη

)
. (4.17b)



An asymptotic approach 213

To solve this, we integrate (4.17a) from 0 to η and (4.17b) from η to η0 and obtain for
0≤η≤ηc:

(k +1)

(
η

d
dη

(f k
0 f1)−f k

0 f1

)
+ η2f1

2(k +1)
=α1

∫ η

0
λf0 − k

2
λ2 df0

dλ
dλ−η

df k+1
0

dη
+f k+1

0 (4.18a)

and for ηc ≤η≤η0 :

(k +1)

(
η

d
dη

(f k
0 f1)−f k

0 f1

)
+ η2f1

2(k +1)
=−α1

∫ η0

η

λf0 − k

2
λ2 df0

dλ
dλ. (4.18b)

Thus, by (4.18b) we can determine α2 from

α2 =− 1
k +1

(
α1 J1(ηc)+ 1

2(k +1)
η2

cf1(ηc)

)
, (4.19)

where

J1(η)=
∫ η0

η

λf0 − k

2
λ2 df0

dλ
dλ. (4.20)

We solve the next-order problem to determine f1(ηc) in Appendix C.

5. The flood problem: asymptotic and numerical results

Let us look again at the case, where k =1 and recall the problem of the impact of a flood on
the groundwater motion, briefly described in the last section. From our asymptotic results, we
find in this case

α0 =−1
2

, α1 =−0·1427743036 , α2 =0·06773941887 . (5.1)

For details see Appendix C.1.
For a comparison of our results with the numerical solution of this problem we recast the

equations in the following form. For 0<η<ηc:

fηη =−f 2
η

f
+ 1

2(1+ ε)

[
α − 1+α

2
η
fη

f

]
, (5.2a)

and for ηc <η<1:

fηη =−f 2
η

f
+ 1

2

[
α − 1+α

2
η
fη

f

]
(5.2b)

with the boundary and interface conditions at 0, ηc and 1,

f (0)=0, (5.3a)

[f ]
η+
c

η−
c

=0, [fη]
η+
c

η−
c

=0, αf (ηc)− 1+α

2
ηcfη(ηc)=0, (5.3b)

f (1)=0, fη(1)=−1+α

4
, (5.3c)

where we have normalized η0 to 1.
Again, we have to solve a two-point boundary-value problem with one boundary condition

more than the order of the differential equation, which is necessary to fix the unknown sim-
ilarity exponent α(ε). The numerical algorithm follows a pattern very similar to the method
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used for the groundwater mound problem with comparable accuracy. Comparing the results
with our asymptotic solution shows very good agreement as seen in Figure 5.

In Figure 6 we show some typical self-similar shapes for the dipole solution for various ε.
We observe, that when the residual saturation σ− approaches σ+, i.e., 1/(1 + ε) → 0, the simi-
larity shapes become symmetrical about their maximum. In this limit, the spreading rate β(ε)=
−[kα(ε)+1]/2 vanishes. This can be seen in Figure 6, which shows a range of spreading rates.

6. Calculation of waiting times

Finally, we like to make a few remarks on how solutions of (4.1) (with k =1) converge to the
similarity solutions for various ε, for compactly supported positive initial data F(x). For the
numerical integration of (4.1) we use again the Imsl routine Dmolch. Again, we let in all our
calculations the number of Hermite knots N =500 and specify the error tolerance tol =10−7.
For the initial condition we use the function

F(x)=x(2−x)3 for 0≤x <2 , (6.1)

and zero otherwise.
At first we consider the case ε = 0. We observe in Figure 7 that the similarity solution

emerges rather quickly. Furthermore, we note that, until about t∗ � 0·11, the support of the
initial data does not move, i.e., we have a positive waiting time t∗. We illustrate these prop-
erties in the left side of Figure 8, where we compare the numerical solution to (4.1) with the
solution to (5.2a–5.3c). Here, we scale the solution f (η) such that its maximum agrees with
the maximum of u(x, t) and multiply η0 =1 by the right boundary of the support of u(x, t),
at a given time.

From the previous sections we know that, for ε>0, the decay rate α(ε) increases, while the
spreading rate β(ε) decreases. Starting with the same initial data as above (6.1), we observe
this behavior in Figure 7 (on the right) for ε =10.

Furthermore, we find that the waiting time for ε >0 is larger than for ε =0. This has the
effect that in such cases, the solution is almost in self-similar form before the boundary of its
support begins to move, as can be observed on the right-hand side of Figure 8. Hence, inter-
estingly, the location of the boundary is here completely described by the similarity solution.

Note however, that waiting times result to a certain extent from local effects [19]. For
initial shapes other than (6.1), for example when the right boundary of the support is
approached linearly, we observe zero waiting times. A classification for initial conditions with
positive waiting time for the modified dipole problem, as well as the modified porous-medium
equation is still not completely understood.
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Figure 6. Self-similar dipole solutions for various ε (left). The spreading rate −β as a function of ε (right).
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Figure 7. u(x, t) for t =0, . . . ,0·2 and for ε =0 (left) and ε =10 (right).

0 1 2
x

0

0.5

1

u
(x

,t
)

0 1 2
x

0

0.1

0.2

0.3
u
(x

,t
)

0 1 2
x

0

0.5

1

u
(x

,t
)

0 1 2
x

0

0.05

0.1

0.15

u
(x

,t
)

0 1 2
x

0

0.5

1

u
(x

,t
)

0 1 2
x

0

0.05

0.1

u
(x

,t
)

Figure 8. Comparison of u(x, t) and the corresponding similarity solution (· · · × · · · ) at t = 0·06,0·12,0·16 for ε = 0
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7. Conclusions

In this paper we derived the second-kind similarity solutions for the modified porous-medium
equation using an approach that combines Lie-group and perturbation theory. We demon-
strated how, for the special case of a spreading two-dimensional liquid mound, it is straight-
forward to determine the second-kind similarity exponent. Our results disagree with those
of [11] to higher-order terms in the perturbation expansion of α. We also studied the
second-kind dipole solutions. These similarity solutions occur for the Dirichlet initial-bound-
ary-value problem and our method exploits the deviation from conservation of mass flux. We
compared our results to numerical computations and showed how, for positive compactly sup-
ported initial data, the similarity solutions are approached.

We like to note that our method is not limited to the family of problems investigated in
this paper. In general, the small perturbation parameter ε, needed to carry out the asymp-
totic expansion, is identified as the deviation of the second-kind process from a corresponding
first-kind self-similar process, and the Lie group of the second-kind self-similar process emerges
as a perturbation of the Lie group of the corresponding first-kind process. More generally, our
method is applicable to problems in which at least one value of the similarity index, together
with the similarity solution, first or second kind, is known. About this value the Lie group can
then be perturbed and solutions for the related problems can be determined.
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Appendix A. Tables

Table 1. α(ε) for various 1−ηr , ηl for a standard choice of tolerances and truncation parameters, tol =
10−10, ηl = 10−4, ηr = 1−10−5, �α =10−11, �fη =10−8, �ηc =10−11, �f =10−7.

ε 1−ηr =10−5 1−ηr =10−4 1−ηr =10−3 ηl =10−3 ηl =10−2

0 −0·500000005 −0·500000014 −0·500001003 −0·500000499 −0·500049962
0·001 −0·500124949 −0·500124959 −0·500125948 −0·500125444 −0·500174898
0·005 −0·500623623 −0·500623633 −0·500624626 −0·500624118 −0·500673534
0·01 −0·501244496 −0·501244506 −0·501245504 −0·501244990 −0·501294359
0·025 −0·503090869 −0·503090879 −0·503091893 −0·503091362 −0·503140590
0·05 −0·506115352 −0·506115362 −0·506116402 −0·506115842 −0·506164840
0·075 −0·509076148 −0·509076158 −0·509077225 −0·509076636 −0·509125409
0·1 −0·511975789 −0·511975800 −0·511976893 −0·511976275 −0·512024827

Underlining indicates the digits which coincide with the values obtained for our standard choice.

Table 2. α1(ε) and α2(ε) computed from
the numerical data, for various ε.

ε α1 α2

0·001 −0·12495 0·05100
0·005 −0·1247 0·05508
0·01 −0·1244 0·05504
0·025 −0·1236 0·05461
0·05 −0·1223 0·05386
0·075 −0·1210 0·05313
0·1 −0·1198 0·05242
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Appendix B. Derivation of f1(ηc)

In order to determine f1(ηc) we multiply (2.21a–2.21b) by the factor η1−d
(
η2

0 −η2
)−1/k

and
integrate the resulting equation for the interval 0 ≤η ≤ηc from 0 to η, and the equation for
the interval ηc ≤η≤η0 from ηc to η. This yields for 0≤η≤ηc:

f1(η)=
(

η2
0

η2
0 −η2

) k−1
k

f1(0) + 2(k d +2)

k
(
η2

0 −η2
) k−1

k

[α1 I2(η)− I3(η)] , (B.1a)

and for ηc ≤η≤η0:

f1(η)=
(

2
k d +2

) k−1
k

(
η2

0

η2
0 −η2

) k−1
k

f1(ηc)−α1
2(k d +2)

k
(
η2

0 −η2
) k−1

k

∫ η

ηc

I0(η)

ηd−1
(
η2

0 −η2
) 1

k

dη, (B.1b)

where

I1(η)=
(

kη2
0

2(kd +2)(k +1)

) 1
k ∫ η0

η

λd−1

(
η2

0

η2
0 −λ2

) k−1
k

dλ

I2(η)=
∫ η

0

I1(λ)

λd−1
(
η2

0 −λ2
) 1

k

dλ, I3(η)=− η2

2(kd +2)

(
k

2(kd +2)(k +1)

) 1
k

.

In order to eliminate the constant f1(0) we first multiply (B.1a–B.1b) by ηd−1 and integrate
the first from 0 to ηc and the second from ηc to η0. After adding both, we can make use of
the normalization (2.12) and obtain

0=f1(0) I7(ηc)+
(

2
k d +2

) k−1
k

f1(ηc) I8(ηc)+2(kd +2)

k
(α1[I5(ηc)− I6(ηc)]− I4(ηc)), (B.2)

where

I4(η)=− 1
2(kd +2)

(
k

2(kd +2)(k +1)

) 1
k
∫ η

0

λd+1

(
η2

0 −λ2
) k−1

k

dλ , (B.3)

I5(η)=
∫ η

0

λd−1

(
η2

0 −λ2
) k−1

k

⎡
⎣∫ λ

0

I1(σ )

σ d−1
(
η2

0 −σ 2
) 1

k

dσ

⎤
⎦ dλ , (B.4)

I6(η)=
∫ η0

η

λd−1

(
η2

0 −λ2
) k−1

k

⎡
⎣∫ λ

ηc

I0(σ )

σ d−1
(
η2

0 −σ 2
) 1

k

dσ

⎤
⎦ dλ , (B.5)

and

I7(η)=
(

kη2
0

2(kd +2)(k +1)

)− 1
k

I1(η) , I8(η)=
(

kη2
0

2(kd +2)(k +1)

)− 1
k

I0(η).

Thus, (B.2) together with (B.1a) at η=ηc yields the formula

f1(ηc)= 8

ηd
0B

(
d
2 , k+1

k

) (α1

[
I7(ηc)I2(ηc)−η

2(k−1)
k

0 (I5(ηc)− I6(ηc))

]

+η
2(k−1)

k

0 I4(ηc)+ kdη2
0

2(kd +2)2

(
k

2(kd +2)(k +1)

) 1
k

I7(ηc)

)
. (B.6)
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Appendix C. O(ε2) solution to the dipole problem

In order to determine f1(ηc), we observe first that (4.18a), (4.18b) can be written in the form

d
dη

(
y

k−1
k η

−1
k+1 f1(η)

)
= 2(k +2)

k

⎛
⎜⎝ α1

y
1
k η2

∫ η

0
λf0 − k

2
λ2 df0

dλ
dλ−

η
df k+1

0
dη

+f k+1
0

y
1
k η2

⎞
⎟⎠ , (C.1a)

for 0≤η≤ηc, and

d
dη

(
y

k−1
k η

−1
k+1 f1(η)

)
=−2(k +2)

k

α1

y
1
k η2

∫ η

0
λf0 − k

2
λ2 df0

dλ
dλ, (C.1b)

for ηc ≤η≤η0, where we denote

y(η)=η
k+2
k+1
0 −η

k+2
k+1 .

We can now integrate (4.18a) from 0 to η and (4.18b) from ηc to η to obtain for 0≤η≤ηc

ηf1(η)=
(

η0

y(η)

) k−1
k

η
k+2
k+1 l0 + 2(k +2)

k
y(η)

1−k
k η

k+2
k+1 (α1F1(η)−F2(η)) , (C.2a)

and for 0≤η≤ηc

ηf1(η)=
(

y(ηc)

y(η)

) k−1
k

η
k+2
k+1 η

−1
k+1
c f1(ηc)− 2(k +2)

k
y(η)

1−k
k η

k+2
k+1 α1F3(η) , (C.2b)

where we denote

l0 = lim
η→0

η
−1
k+1 f1(η) ,

F1(η)=
∫ η

0

1

y(λ)
1
k λ2

(∫ λ

0
σf0 − k

2
σ 2 df0

dσ
dσ

)
dλ ,

F2(η)=
∫ η

0

λ
df k+1

0
dλ

+f k+1
0

y(λ)
1
k λ2

dλ , F3(η)=
∫ η

ηc

1

y(λ)
1
k λ2

(∫ η0

σ

σf0 − k

2
σ 2 df0

dσ
dσ

)
dλ .

We finally use the integral condition (4.8) after we integrate (C.2a) from 0 to ηc and (C.2b)
from ηc to η0 and adding the resulting parts, yielding

0= l0 G1 +η
−1
k+1
c f1(ηc)H1 + 2(k +2)

k
(G2 −H2) , (C.3)

where

G1 =
∫ ηc

0

(
η0

y(η)

) k−1
k

η
k+2
k+1 dη, G2 =

∫ ηc

0
y(η)

1−k
k η

k+2
k+1 (α1F1(η)−F2(η)) dη ,

H1 =
∫ η0

ηc

(
y(ηc)

y(η)

) k−1
k

η
k+2
k+1 dη, H2 =

∫ η0

ηc

y(η)
1−k
k η

k+2
k+1 α1F3(η)dη.

Equation (C.3) together with (C.2a), evaluated at η=ηc, enable us to eliminate l0 and to solve
for f1(ηc):

f1(ηc)= 2(k +2)

k
η

1
k+1
c

⎛
⎜⎝η

1−k
k

0 (α1F1(ηc)−F2(ηc))− G2−H2
G1

(y(ηc)/y(η0))
k−1
k + H1

G1

⎞
⎟⎠ . (C.4)
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C.1. α2 for the flood problem

The integrals, needed to find f1(ηc), turn out to be

F1(η)=−η
3/2
0

60
log(1− z3), F2(η)=−η3/2

72
, where z=

(
η

η0

)1/2

.

F3(η)= η
3/2
0

60

[√
3 arctan

(
2ζ +1√

3

)
− 1

2
log

(
(1− ζ )2

1+ ζ + ζ 2

)

− 3
2ζ 2

+ log(1− ζ 3)

]z

v

=:
η

3/2
0

60
(φ(z)−φ(v)) , where v =

(
ηc

η0

)1/2

.

G1 = 2
5
η

5/2
c , H1 = 2

5

(
η

5/2
0 −η

5/2
c

)
.

H2 = α1η
4
0

150

(√
3(1−v5)arctan

(
2v +1√

3

)
− 3

2
(1+v5) log(1+v +v2)

+3
2
v2
(

1+v + 2
5
v3
)

+3
(

log(3)− 6
5

)
−φ(v)(1−v5)

)
.

G2 =−α1η
4
0

150

(
v5

2
log

(
(1−v3)2

)
+ 1

2
log(1+v +v2)− 1

2
log

(
(1−v2)

)

−
√

3 arctan
(

2v +1√
3

)
− 3

2
v2
(

1+ 2
5
v3
)

+
√

3 arctan
(

1√
3

))
+ η4

c

288
.

These yield the value α2 =0·06773941887.
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